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Quantum tunneling in the presence of chaos is analyzed, focusing especially on the interplay between
quantum tunneling and dynamical localization. We observed flooding of potentially existing tunneling ampli-
tude by adding noise to the chaotic sea to attenuate the destructive interference generating dynamical local-
ization. This phenomenon is related to the nature of complex orbits describing tunneling between torus and
chaotic regions. The tunneling rate is found to obey a perturbative scaling with noise intensity when the noise
intensity is sufficiently small and then saturate in a large noise intensity regime. A relation between the
tunneling rate and the localization length of the chaotic states is also demonstrated. It is shown that due to the
competition between dynamical tunneling and dynamical localization, the tunneling rate is not a monotonically
increasing function of Planck’s constant. The above results are obtained for a system with a sharp border
between torus and chaotic regions. The validity of the results for a system with a smoothed border is also
explained.
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I. INTRODUCTION

Since the dawn of quantum theory, the tunneling effect
has been recognized as a representative of genuine quantum
phenomena. This does not necessarily imply that the tunnel-
ing effect has nothing to do with underlying classical dynam-
ics. What recently attracts much interest concerns the fact
that quantum tunneling in multidimensional systems or more
specifically in nonintegrable systems strongly reflects the
phase-space structures of the corresponding classical system
�1–11�.

What is specific in generic nonintegrable systems which
are neither completely integrable nor fully chaotic is that
phase space is divided into infinitely many invariant compo-
nents and they are generally intermingled with each other.
The transition between different invariant components is for-
bidden in classical dynamics and invariant components form
dynamical barriers in phase space. On the other hand, in
quantum mechanics, the transition through dynamical barri-
ers thus formed may be allowed as a result of quantum ef-
fects. In particular, based on the notion of quasimodes �12�,
the quantum transition between congruent tori which are
symmetrically formed in phase space is called dynamical
tunneling in the literature �13�.

Dynamical tunneling happens in mixed-types phase space
where invariant tori and chaotic regions coexist. This fact
immediately invokes a question about the possible roles of
chaos in the process of dynamical tunneling. The notion of
chaos-assisted tunneling has been proposed to capture the
situation where, besides quasidoublet states localized on
symmetrically formed congruent tori, chaotic states take part
in the tunneling process �3�. Semiclassical analysis in the
time domain also reveals that a bunch of tunneling trajecto-
ries associated with chaos or more precisely the Julia set in
complex plane, is involved in dynamical tunneling in mixed
phase space �7,14�. What was commonly emphasized there
was an aspect that chaos enhances dynamical tunneling.

On the contrary, we here focus on another aspect of the
role of chaos. In particular, it may happen that dynamical

tunneling is suppressed even in the presence of chaos. As
explained below, there exist two competing effects behind
the dynamical tunneling process, both of which originate
from the nature of complex classical trajectories describing
the tunneling transition from torus to chaos.

As shown in Refs. �7,14�, exponentially many complex
trajectories, not a single instanton path as in integrable tun-
neling, contribute to the semiclassical time-evolution opera-
tor which allows us to evaluate the tunneling amplitude from
torus to chaotic regions. Such complex trajectories start from
an initial state placed in the torus region and reach a final
state in the chaotic sea. An important fact is that in the first
stage in their itinerary these complex orbits have nonsmall
imaginary components and move in the complex plane,
whereas the orbits are soon attracted by the real plane along
stable manifolds and then move very close to the real plane
in the later stage. The rate of the attraction is exponentially
fast, reflecting the fact that the behavior of the orbits is con-
trolled by the stable manifolds of unstable periodic orbits in
the real phase space �7,14�. These observations imply that
complex trajectories describing the tunneling transport have
amphibious character: they act as tunneling orbits when they
stay in the torus region and behave as if they are almost real
orbits when reaching the chaotic sea �15�. A well-recognized
aspect of dynamical tunneling, that is, the enhancement of
tunneling, is explained by the fact that the number of tunnel-
ing orbits is exponentially many �7,14�.

However, their contributions to the tunneling amplitude
are merely “potentially existing.” This is because the time
evolution in the later stage may involve opposite effects on
the transport property, especially when dynamical localiza-
tion governs the quantum dynamics in the chaotic region
�16–18�. The amphibious nature of complex orbits predicts
that the tunneling penetration through integrable barriers and
the dynamics in the chaotic sea are not independent of each
other, rather they must be closely related. Therefore, we ex-
pect that if the spreading of wave function is suppressed due
to dynamical localization in the chaotic sea, which appears
as a result of destructive interference effects, the tunneling
transport is simultaneously suppressed. In order words, po-
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tentially existing tunneling orbits are exponentially many, but
they interfere with each other to form localization. This is
our working hypothesis and the purpose of this paper is just
to verify that there exists strong interplay between dynamical
tunneling and dynamical localization.

In order to confirm our hypothesis, that dynamical tunnel-
ing is significantly reduced as a consequence of dynamical
localization, our strategy is to apply noise to destroy the
destructive interference generating dynamical localization.
The idea is essentially the same as the one which has been
used to see that the recovery of classical diffusion occurs
when external noise is applied to dynamically localized
states �19,20�. In the present case, to avoid noise-activated
hopping from torus to chaos, we selectively add noise only to
the chaotic region with the torus region being untouched.

We should mention that the interplay between dynamical
tunneling and dynamical localization is crucial to understand
the emergence of amphibious eigenstates �21,22�. In �21,22�
they suggested the competition between the effective Heisen-
berg time and the tunneling time is important to determine
whether eigenfunctions show amphibious nature. The former
time scale concerns dynamical localization and the latter dy-
namical tunneling. Therefore, the flooding of eigenfunction
found in �21,22� can be interpreted as a consequence of the
flooding of potentially existing tunneling orbits.

This paper is organized as follows. In Sec. II, we present
an area-preserving map that is designed to have phase space
clearly separated into torus and chaotic regions. To verify our
hypothesis stated above, a noise term is added. The noise
term is characterized by two parameters: the strength � and
the distance l from the border between torus and chaotic sea.
In Sec. III, we first investigate the case without noise as a
reference for our subsequent argument about the case with
noise. We especially show two typical behaviors of tunneling
transition and the sensitive dependence of the tunneling am-
plitude on the variation in the system parameters. In Sec. IV,
we provide numerical evidence demonstrating that the intro-
duction of the noise qualitatively changes the nature of tun-
neling. We define a tunneling decay rate �, which will be
used to quantify the rate of tunneling penetration, and then
show that it is strongly enhanced if noise is imposed. In Sec.
V, we examine how the noise strength affects the tunneling
decay with the smallest l, i.e., the noise being applied to the
whole chaotic sea. For small �, � increases perturbatively as
�2 increases. For large �, � saturates to a certain “classical
value” and the parameter sensitivity of � disappears. In Sec.
VI, we focus on the l dependence on �, where we show that
a characteristic scale of l coincides with the localization
length of the chaotic sea. An interesting finding is that there
exists a region of l in which the tunneling rate decreases even
though Planck’s constant becomes large. This is exactly be-
cause of the strong interplay between dynamical tunneling
and dynamical localization. In Sec. VII, we examine whether
or not our result is valid for systems with a smoothed border
between torus and chaotic regions. We show that almost all
results obtained in cases with clearly separated phase space
hold even in such generic situations. Finally, in Sec. VIII, we
discuss our results and summarize the paper.

II. DESIGNING PHASE SPACE FOR CHAOTIC
TUNNELING

Classical phase space in a mixed system is very complex
in general; besides chaotic components, a variety of invariant
components such as Kolmogorov-Arnold-Moser �KAM�
circles, islands of stability, or cantori live together in a single
phase space. Great difficulties arise not only in classical but
also in quantum dynamics in mixed systems due to the im-
mense complexity of phase space.

In order to avoid complicated effects due to the mixture of
different types of invariant structures, one strategy is to make
the phase space “clean.” Designing sharply divided phase
space in a class of piecewise linear map is in this spirit �23�,
and the recent finding of mushroom billiards also provides a
good testing ground for a precise understanding of mixed
systems �24�.

A. Model system

We here present our system whose classical phase space is
clearly separated into torus and chaotic regions. Let us con-
sider the one-dimensional kicked rotor described by the
Hamiltonian

H�p,q,t� = T�p� + V�q� �
n=−�

�

��t − n� , �1�

where p and q are the momentum and the position �angle� of
rotor, respectively. The corresponding classical dynamics is
reduced to the area-preserving map

F:�pn+1

qn+1
� = � pn − V��qn�

qn + T��pn+1�
� . �2�

To realize the phase space which is clearly separated into
regular and chaotic regions, we take the kinetic and potential
terms in the following way: for the kinetic term, we have

T0�p� =
1

2
s�p − d�2���p − d� + ��p − d� , �3�

where ���x� denotes a smoothed step function with a param-
eter ���0�:

���x� �
1

2
	1 + tanh��x�
 , �4�

e.g., ���x�→0 as x→−� and ���x�→1 as x→+�.
lim�→� ���x� gives the Heaviside step function. For p	d,
T0�p����p−d� is a kinetic term for a linear rotor with a
rotation number �. On the other hand, above the “border”
p=d in the momentum space, the quadratic term s�p−d�2 /2
appears in the kinetic term. Throughout this paper we em-
ploy the following potential term

V�q� =
k

4
2cos�2
q� . �5�

We therefore have, for p	d,
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H � ��p − d� +
k

4
2cos�2
q� �
n=−�

�

��t − n� �6�

which is completely integrable, and, for p�d,

H �
1

2
s�p − d�2 + ��p − d� +

k

4
2cos�2
q� �
n=−�

�

��t − n� ,

�7�

which is reduced to the standard mapping with a nonlinearity
parameter sk under an appropriate scaling of the Hamiltonian
and a shift in the momentum space. Figure 1 shows examples
of the classical phase space with several different values of s.
In the following, we will examine the case of s=4 where
phase space is clearly separated into torus and chaotic re-
gions. As shown in Fig. 1�c�, when s=4 the islands around
the border between torus and the chaotic regions are almost
invisible. However, it should be noted that the border is not
as sharp as in a previously studied class of piecewise linear
map �23� or mushroom billiards �24�. One can find tiny is-
land chains in much more magnified figures.

B. Introduction of the effect of noise

As is well known, dynamical localization occurs as a re-
sult of destructive interference in the chaotic sea �16–18�.
Conversely, once quantum interference is destroyed in some
way, classical diffusion is recovered �19,20�. In a similar
way, we will verify that chaotic tunneling is suppressed by
dynamical localization in the chaotic sea by examining
whether or not potentially existing chaotic tunneling is re-
covered if destructive interference creating dynamical local-
ization is attenuated.

A simple way to destroy quantum interference is, as done
in numerical tests to see the recovery of classical diffusion
�19,20�, to apply noise to chaotic seas. However, the intro-
duction of noise needs to be done carefully and should only
be limited to chaotic regions, otherwise the tunneling process

will be contaminated by the thermal hopping between the
torus and the chaotic seas. In order to avoid the transition
from the torus region into chaotic sea, noise will be applied
only to the region that is far from the torus, say p�L ��d�.
We employ the following modification to the kinetic term to
realize such momentum-dependent noise:

T��p,n� = T0�p� + ��n�p − L����p − L� , �8�

where � is the noise strength and �n is a stochastic variable.
We assume that �n obeys a Gaussian distribution:

�n� = 0, �n�m� = �mn, �9�

where  · � denotes the ensemble average.

C. Quantum map

The quantum dynamics associated with the classical map
Eq. �2� is presented following the standard quantization pro-
cedure of quantum maps. Due to the periodicity of the map
Eq. �2� in q, the periodic boundary condition �with a period
1� is imposed on the wave function in the position represen-
tation. We also impose the periodic boundary condition in
the momentum space − W

2  p
W
2 . As a result of these

boundary conditions, the effective Planck’s constant is thus
quantized as

h =
W

N
, �10�

where N is the dimension of the Hilbert space of the system.
Furthermore, in order to avoid the finite-size effect in the
diffusion process, an absorbing boundary is set at p= pcutoff.
We deliberately choose pcutoff large enough to ensure the con-
vergence of the characteristics of dynamical tunneling from
torus to chaotic sea �25�. A unit time evolution of the state
vector ��n� is described by the quantum map

(a)

d

(b) (c) (c’)

q

p

FIG. 1. �Color online� Phase space portraits of the classical map Eq. �1� with T�p�=T0�p� �Eq. �3��. The parameters are set to be d
=0.3, �=0.6418. . ., k=2, and �a� s=0.5, �b� s=2, and �c� s=4. The smoothing parameter �=100 is chosen so that the border between torus
and chaotic regions is clear. Note that the border is not sharp in the strict sense �see text�. A magnification of the area around the border in
the case of s=4 is shown in �c��. For small s, there are big islands in the chaotic sea and also around the border. On the other hand, if s is
sufficiently large, e.g., s=4, these islands become so small that the influence of these almost invisible islands on dynamical tunneling is
negligible.
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��n+1� = Û��n� , �11�

where Û is the time-evolution operator for a unit time inter-
val

Û = exp�−
2
i

h
T�p̂��exp�−

2
i

h
V�q̂�� . �12�

III. TUNNELING DOUBLET, SUPPRESSION OF DECAY,
AND DYNAMICAL LOCALIZATION
IN THE SYSTEM WITHOUT NOISE

Before studying the case where the noise term is present,
we show that the tunneling process from the torus to the
chaotic region is sensitive to the change in system param-
eters, even though the classical phase space of our system
has carefully been designed to remove resonance islands.
The result tells us that the quantum interference effect is very
relevant in the issue of dynamical tunneling, and it strongly
affects the transition process

Hereafter, the time evolution of tunneling is quantitatively
monitored using

Pn
torus = �

pa

pb

��n�p��2dp , �13�

where �n�p� is the wave function in the momentum repre-
sentation at the nth step, and parameters pa and pb are ap-
propriately chosen to enclose the torus region. We use pa
=−W /2 and pb=d in the following �26�.

Throughout this paper, the initial wave function is taken
as an eigenstate of the linear rotor Eq. �6�. As explained in
Appendix, the initial wave function �torus�q ; pc� in the posi-
tion representation is specified by pc, where pc represents the
“average” of the momentum of the torus �27�. The initial
state is placed just below the border between the torus and
the chaotic sea, i.e., pc=0 �see Fig. 2�. This is because the

tunneling amplitude becomes too small compared to the nu-
merical precision if the initial state is placed too far from the
border.

As mentioned above, even with a small change in param-
eters, Pn

torus changes rather drastically and there appears a
variety of oscillatory patterns in the plot of Pn

torus. In the
following, we show two typical examples. As seen below, in
spite of only slightly different values of s, oscillatory pat-
terns are entirely different. Note that variation in s does not
have any effect on the integrable region. It only affects cha-
otic regions. The classical phase space portrait is therefore
almost unchanged under a small change in s.

First we depict the time evolution of Pn
torus in the case of

s=4.2566. . . �see Fig. 3�. We hereafter call this the off-
resonant case �28�. Pn

torus keeps almost unity value as shown
in Fig. 3�a�, which means that most of the probability ampli-
tude is confined within the torus region. On the other hand,
as shown in Fig. 3�b�, the snapshots of the log-scaled prob-
ability distribution in the momentum representation, once the
tunneling transition from the torus to chaotic region occurs,
the wave function starts to diffuse into the chaotic sea. How-
ever, the diffusion is gradually saturated and the wave func-
tion asymptotically approaches a stationary shape. This is a
result of dynamical localization. In other words, almost all of
the probability amplitude that tunnels out of the torus region
is confined in a region d� p�d+�. Here � represents the
localization length in the chaotic sea �17�.

Next, we slightly change the parameter to s=4.2178. . .
�see Fig. 4�. In contrast with the previous case shown in Fig.

l

d L

q

p

|ψ|2

p

FIG. 2. Probability distribution of initial wave function in the
momentum space �upper� and its schematic illustration in phase
space �lower�. We impose noise on the shaded domain.
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FIG. 3. �Color online� An example of the off-resonant case �s
=4.2566. . .� with h=1 /20, W=40, and pcutoff=18. Other parameters
are the same as Fig. 1. At n=0 almost all of the probability is
localized in the torus region. �a� Pn

torus as a function of time step n.
During the time evolution, Pn

torus keeps almost unity value. In the
inset, we magnify the tiny oscillation of Pn

torus. �b� Snapshots of the
momentum distribution ��n�p��2. The border between the torus and
chaotic regions is at d=0.3. The diffusion in the chaotic sea is
suppressed by dynamical localization, so the probability distribution
tends to a stationary distribution with an exponentially decaying
tail, which is characteristic of dynamical localization in the chaotic
sea.
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3�a�, Pn
torus exhibits a periodic oscillation �see Fig. 4�a��. In

accordance with the oscillation of Pn
torus, as shown in Fig.

4�b�, the momentum distribution also exhibits a recurrent
pattern. Initially, the wave function is localized within the
torus region. As time elapses, most of the probability ampli-
tude escapes to the chaotic region. After that, the wave func-
tion comes back to the torus region. Such a recurrent oscil-
lation strongly suggests the emergence of a tunneling doublet
composed by a torus and a chaotic state. We call this type of
behavior the resonant case �28�.

To see large fluctuation with the variation in s more ex-
plicitly, we present in Fig. 5 the amplitude of the time-
dependent oscillation of Pn

torus as a function of s. Such an
erratic oscillation pattern reminds us of chaos-assisted tun-
neling, where the tunnel splitting between symmetry-related
torus states exhibits strong fluctuation with variation in pa-
rameters �1,3�. In the case of chaos-assisted tunneling, the

fluctuation is induced by avoided crossings that involve the
torus and the chaotic states.

Now we explain the origin of the sensitivity of the tun-
neling to the variation in s in the present case. This is also
due to the sensitivity of accidental degeneracies between
torus and chaotic states. As evidence, we compare the
quasienergies and the oscillation amplitude of Pn

torus in Fig. 6.
Since s mainly affects the dynamics in the chaotic sea, the
quasienergies of the torus states keep almost constant and
form avoided crossings with many energy levels correspond-
ing to chaotic states. Around these avoided crossings, coher-
ent oscillation between torus and chaotic states occurs. In
Fig. 6, we clearly see the correspondence between peaks of
the oscillation amplitude and positions of avoided crossings.
Note that the period of the tunneling oscillation is well de-
scribed by the formula Tosc=2
� /�, where � is the gap of
quasienergies.

We remark on the influence of the absorbing boundary.
The distance between the positions of the border d and the
absorbing boundary pcutoff is much larger than the localiza-
tion length, e.g., pcutoff−d��. The probability amplitude
which reaches the absorbing boundary is exponentially
small, even if almost all of the probability amplitude tempo-
rarily gets out of the torus region in the resonant case �see
Fig. 4�b��. Hence the influence from the absorbing boundary
is virtually negligible. In this sense, the wave function is
approximately bounded around the torus region or the nearby
chaotic sea.

We summarize our findings in this section. In the absence
of noise, the behavior of the wave function launched from
the torus region sensitively depends on the parameter s while
classical dynamics does not. This is explained by the pres-
ence of the near-degeneracies of quasienergies. In particular,
we discovered a kind of tunneling doublets that couples a
torus state with a chaotic state that exhibits dynamical local-
ization.
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FIG. 4. �Color online� An example of the resonant case. Except
for s�=4.2178. . .�, the values of the parameters are the same as in
Fig. 3. �a� Pn

torus as a function of time step n. A large oscillation
ranging from 0.1 to 1.0 is observed. �b� Snapshots of the momen-
tum distribution ��n�p��2 at n=200, 1800 and 3500, each of which
corresponds to an extremum in the curve shown in �a�. Dynamical
localization occurs in the chaotic region, as it does for the off-
resonant case. In the inset, tunneling oscillation between the torus
region p�d and a part of the chaotic sea d� p�5 are magnified.
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FIG. 5. The oscillation amplitude of Pn
torus as a function of s.
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FIG. 6. Quasienergies of torus and chaotic states �upper� and the
magnification of oscillation amplitude of Pn

torus in Fig. 5 as a func-
tion s �lower�. Only the quasienergies of the eigenstates whose mo-
mentum expectation values fall within the range −0.2� p�6.0 are
shown �29�, because the chaotic states which have large contribu-
tion to the oscillation are expected to be near the torus state. A line
running in the horizontal direction represents an eigenenergy asso-
ciated with a torus eigenstate. It forms many avoided crossings with
energy levels corresponding to chaotic states. Note that peaks of
oscillation amplitude appear when avoided crossings occur.
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IV. EXPONENTIAL DECAY DUE TO THE BREAKDOWN
OF DYNAMICAL LOCALIZATION

As shown in the previous section, the tail of the wave
function, which is initially localized and exponentially de-
caying toward the chaotic sea, gradually spreads over the
chaotic sea as time proceeds and dynamical localization con-
trols the nature of the wave function there. In other words,
dynamical tunneling necessarily accompanies dynamical lo-
calization in the chaotic sea.

To examine the influence of dynamical localization on the
tunneling process further, we will add external noise to the
chaotic region to attenuate dynamical localization. As is ex-
plained in Sec. II B, the kinetic term of our kicked Hamil-
tonian is replaced with T��p ,n� �Eq. �8��, where noise is
applied only to the region p�L. To avoid contaminating the
tunneling process with “thermal agitation,” we impose the
condition L�d. Furthermore, in this section, we make L as
small as possible to observe the case where dynamical local-
ization is attenuated in the whole chaotic sea. In the follow-
ing, we examine the effect of noise for both resonant and
off-resonant cases.

First, for the off-resonant case �s=4.2566. . .�, we can ex-
plicitly see from Fig. 7�a� that unlimited diffusion does take
place �30�, which is in sharp contrast to Fig. 3. More impor-
tantly Pn

torus decays exponentially, and its decay rate depends
on the intensity of the noise. As seen in Fig. 7�a�, the decay
rate gets larger with the increase in the noise intensity. The
origin of the exponential decay of Pn

torus can be attributed to
the tunneling effect, since we apply noise so that it does not
affect the classical dynamics in the torus region. In other
words, the exponential decay has nothing to do with thermal
hopping from the torus into the chaotic regions. Typical
snapshots of the probability distribution are shown in Fig.

7�b�, where the effect of noise becomes significant at larger
n.

Thus we show the chaotic tunneling from a torus into
chaotic regions is enhanced drastically even though the noise
is added only to the chaotic sea. This means that the recovery
of diffusion in the chaotic region or the disappearance of
dynamical localization gives rise to drastic enhancement of
dynamical tunneling, or alternatively stated, dynamical local-
ization suppresses dynamical tunneling.

Second, we examine the resonant case �s=4.2178. . .�,
where Pn

torus periodically oscillates in time. In the presence of
noise, the behavior of Pn

torus is sensitive to � �see Fig. 8�a��.
Pn

torus decays much faster than in the off-resonant case �see
Fig. 7�a��. This is because dynamical tunneling, whose res-
toration is due to the presence of noise, as in the off-resonant
case, is pumped by the resonance, which remains because the
noise intensity is still small enough. Snapshots of probability
distribution are shown in Fig. 8�b�. We also show a magni-
fied view of Husimi functions in Fig. 9 to explain the pump-
ing. For larger �, Pn

torus exhibits exponential decay. Further-
more, as � increases, the decay of Pn

torus becomes slower, in
contrast with the off-resonant case. This suggests that the
effect of resonance becomes weaker as the noise intensity
becomes larger.

These observations motivate us to introduce a decay rate
� for Pn

torus to characterize the restoration of dynamical tun-
neling, at least in an early stage, e.g., n�104�106 steps in
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FIG. 7. �Color online� The off-resonant case under the presence
of noise with L=d+0.2. The other parameters are the same as in
Fig. 3. �a� Pn

torus exhibits exponential decay, where the exponent
increases as � increases. �b� We depict snapshots of the probability
distribution at �=0.005. For large n ��100�, the effect of noise
becomes significant �cf. Fig. 3�b��.
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FIG. 8. �Color online� The resonant case with noise �L=d
+0.2�. The other parameters are the same as in Fig. 7. �a� Pn

torus

exhibits oscillatory decay for �=5�10−4. To introduce a decay rate,
we fit an exponential curve to the oscillatory decay for short time
steps �e.g., n104�. A dashed line in the inset depicts the result of
the fitting to the oscillatory decay. As the effect of noise increases,
the resonant oscillation disappears and Pn

torus shows exponential de-
cay for longer time steps, where the decay rate slows down in
contrast with the off-resonant case. The decay rate for the strongest
noise �e.g., �=0.005� is almost the same as that for the off-resonant
case �see Fig. 7�a��. �b� Snapshots of the time evolution at �=5
�10−4 are presented. Each time step corresponds to the time step in
Fig. 4�b�.
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Figs. 7 and 8. We should remark, however, that the fitting is
rather subtle for weak � in the resonant case, where the
“early stage” becomes rather short, e.g., n�104 in the ex-
ample shown in Fig. 8.

V. NOISE STRENGTH DEPENDENCE OF CHAOTIC
TUNNELING

In this section, we examine the dependence of the tunnel-
ing decay rate �, introduced in the previous section, on the
noise strength �. We first recall the studies on the effect of
noise on dynamical localization �19,20�, in which it was re-
ported that the diffusion rate of quantum systems when noise
is imposed depends on the noise strength. More precisely, if
noise is weak enough, the behavior of the diffusion rate as a
function of the noise strength is understood within a pertur-
bation theory: the diffusion rate scales with the square of

noise strength. In contrast, if noise is stronger than a certain
threshold, the diffusion rate saturates to a classical value. We
here expect that a similar dependence of tunneling on the
noise intensity would be observed. Figure 10 actually verifies
this prediction. Below we will explain how � depends on � in
more detail.

When noise is weak �� /h	1�, the decay rate � is propor-
tional to �� /h�2. This behavior can be, although not explicitly
shown here, reproduced by performing a perturbation expan-
sion with respect to a small parameter �. Qualitatively, expo-
nentially decaying behavior is observed as a result of de-
struction of dynamical localization, therefore, as the degree
of destruction is increased, the decay rate � grows. Further-
more, � strongly depends on the parameter s, and in particu-
lar, the locations of the peaks for finite � coincide with the
resonances of the unperturbed system ��=0�, which is shown
in Fig. 10�b�. This means that the effect of resonance persists
in the perturbative regime.

MAX

MINp

q

p

q

q

q

n=200 n=200

n=1800 n=1800

n=3500

n=5000

n=3500

n=5000

ε=0 ε=0.0005

FIG. 9. �Color online� Time evolution of Husimi functions �in a logarithmic scale� in the resonant case for �=0 �left column� and �
=0.0005 �right column� at n=200, 1800, 3500, and 5000 �from top to bottom�. The corresponding phase space portrait is superposed. The
other parameters are the same as in Figs. 4 and 8. For �=0, there occurs coherent tunneling between the torus region and the chaotic sea. At
n=1800 and n=5000, the system completely tunnels out to a localized region in the chaotic sea. The system periodically comes back to the
torus region �e.g., n=3500�. Hence the “pumping out” and “pumping back” of wave packet between the torus region and chaotic seas cancels
out in the absence of noise in the long time average. The pumping still remains for �=0.0005, though the cancellation is broken. On a short
time scale, the effect of noise is negligible �n=200�. At n=1800, the noise hinders the tunneling from the torus partially, and at the same
time, promotes the diffusion at the chaotic sea. The discrepancy due to the noise is more evident at n=3500. Although Pn=3500

torus is far larger
than Pn=1800

torus �see the inset of Fig. 8�a��, the recurrence is not quite perfect. In the chaotic sea, there remains a diffusive component, which
is produced by the tunneling in the previous steps and fails to back to the torus region. This explains why the pumping that occurs in the
resonant case promotes the tunneling decay �see Figs. 7�a� and 8�a��.
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When � lies in an intermediate region, the decay rate � is
still influenced by the effect of noise. In the off-resonant
case, � obeys the perturbative behavior over a rather wide
range of �. On the other hand, in the resonant case, the per-
turbative argument is not applicable in the intermediate re-
gion, and the rate of growth of � with � depends on s. Two
typical examples are shown in Fig. 10�a� �10−2�� /h�1�.
With s=s1, the rate of growth of � with �2 temporarily de-
creases and � converges to the value for the off-resonant case
�s=s3� as � is increased. In another case, s=s2 in Fig. 10�a�,
� temporarily decreases even with increase in �. A possible
explanation is that the effect of resonance is attenuated by
moderate noise.

We summarize the results for weak and intermediate noise
intensity regions: an overall trend is that � increases on av-
erage, whereas the fluctuation of � decreases with increase in
�. This suggests that, in the weak and intermediate regions,
there exists a competition of two different interference ef-
fects; one is a constructive interference induced by reso-
nances, and the other a destructive interference associated
with dynamical localization. The former and the latter corre-
spond to the changes of the fluctuation and the average of �,
respectively.

For large �, it is natural to expect that these interference
effects become totally incoherent. Indeed, we numerically
find that � is almost independent of s, which is shown in Fig.
10. What is most important is that � seems to converge to a
certain value. The existence of the plateau regime �in the
noise strength dependence of the tunneling rate� strongly

suggests a “classical value” of the tunneling rate � in the
incoherent limit. If this is the case, it must be evaluated
based on complex classical orbits.

VI. PARTIAL DESTRUCTION OF DYNAMICAL
LOCALIZATION

In the cases considered so far, noise was applied to the
whole chaotic sea, that is L�d. In this section, we see how
the decay rate � behaves and how the localization length �
depends on � when noise is applied only to the limited cha-
otic region which is distant from the torus region, that is L
�d. In the following we denote the width of the unperturbed
chaotic region, that is the region without noise, by l=L−d as
shown in Fig. 2 schematically.

For l�0, since dynamical localization remains in the un-
perturbed chaotic region d� p�L, we can expect that dy-
namical tunneling is suppressed partially by the remaining
localization. On the other hand, in the perturbed region p
�L, we can expect that noise destroys dynamical localiza-
tion to restore the diffusion process for the same reason as
discussed above. The latter is again supposed to help the
restoration of the chaotic tunneling. In order to avoid com-
plications, we here restrict ourselves to the case where the
noise intensity is sufficiently large, which corresponds to the
case with large � examined in the previous section.

As is shown in Fig. 11, we found that � tends to decrease
exponentially as l increases. Furthermore, when l is larger
than a certain value, � strongly fluctuates with respect to s.
An interpretation for the presence of large fluctuation is that
the resonance previously observed in the perturbative regime
�i.e., smaller �� with l�0 is recovered. It should also be
noted that � is not monotonic with l. We suppose that this is
also due to the recovery of the resonance, whose quasienergy
gap is modulated by l.

In the following, we discuss a gross feature of the � de-
pendence on l through an ensemble average with respect to s
within a narrow interval �s=0.05. Since the fluctuation of �
is rather large, we take the average ln ��s, instead of ��s. As
shown in Fig. 11�b�, the average ln ��s decreases monotoni-
cally as a function of l. This is consistent with exponential
dependence of � on l. On the other hand, the fluctuation of
ln � gradually becomes larger as l increases. This is due to
the presence of resonances as explained above.
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FIG. 10. �Color online� �a� The decay rate � as a function of
� /h for different values of the parameter s=s1�=4.175. . .�,
s2�=4.2178. . .�, and s3�=4.2566. . .�. The former two correspond to
resonant cases and the latter to an off-resonant case. The other
parameters are the same as in Fig. 3. When the effect of noise is
weak, the tunneling decay rate obeys a perturbative behavior �
��2 �dotted line�. � is saturated in the strong intensity regime
�� /h�1�. �b� The decay rate � as a function of s for different � /h.
Arrows indicate sj’s. The locations of the peaks for small � coincide
with the resonances of the unperturbed system �see also Fig. 5�.
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FIG. 11. �Color online� �a� The logarithm of the tunneling rate �
as a function of l=L−d for several values of s. �b� The average and
variance of log10 �. A theoretical line �theory�e−2l/� �see text� is
drawn as a dashed line. The parameters are h=1 /20 and � /h=5.
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The exponentially decaying behavior of � as a function of
l suggests the presence of a characteristic momentum scale.
It is simplest to hypothesize the following dependence of �
on the localization length � of the unperturbed chaotic re-
gion.

ln ��s � ln �0 − �
l

�
�14�

where �0 and � are constants.
To examine the validity of this hypothesis, we first deter-

mine the localization length � by fitting the slope of the
probability distribution numerically. The value of � can be
roughly estimated using the following perturbative argument.
Let a wave packet evolve from the torus without noise. If we
wait long enough, the wave packet becomes a superposition
of the torus state and a chaotic state. The latter exhibits dy-
namical localization in the chaotic sea �see Sec. III�. In this
case, the envelope of the wave function in the momentum
representation takes the exponential form �e−p/� in the cha-
otic sea. Once we impose noise at p�L, tunneling penetra-
tion starts. We assume that the wave function for p�L is
almost unchanged in spite of the presence of noise. Then the
rate of the tunneling would be proportional to �e−l/��2. This
implies �=2. A test of our argument for h=1 /20 is shown in
Fig. 11�b�. The result suggests � should be slightly larger
than 2.

In Fig. 12, the validity of Eq. �14� for various values of h
is examined. If � in Eq. �14� is assumed to be independent of
h, � depends on h only through �0 and �. Hence we check
how the scaled decay rate ln�� /�0��s depends on the scaled
width of the unperturbed chaotic region l /�. The results in
Fig. 12 roughly validate our assumed scaling relation Eq.
�14� with � slightly less than 2. We thus conclude that the
localization length is a crucial factor for determining �. In
other words, chaotic tunneling is shown to be strongly cor-
related with dynamical localization in such a way.

We discuss an implication of the scaling relation Eq. �14�
for h dependence on �. On one hand, �0 decreases as h→0.
On the other hand, the localization length � increases as h
→0 �17�. Hence, h dependence of ���0 exp�−�l /�� for a
given value of l is not monotonic, provided l�0. An ex-
ample is shown in Fig. 13, where l vs ln����s is plotted for
two values of h. For small l, ln����s becomes smaller as h
becomes smaller. This is explained by h dependence of �0.

For large l, the opposite occurs. Namely, the tunneling rate
grows even though the Planck’s constant h is reduced. Hence
we discovered that the Planck’s constant dependence of the
tunneling rate is not monotonic when there partially remains
dynamical localization in the chaotic sea. This is quite a
unique feature and another piece of evidence for the strong
correlation between dynamical localization and chaotic tun-
neling.

VII. CASE WITH SMOOTHED BORDER

Up to now, we have studied the system whose phase space
is sharply separated between torus and chaos, and the degree
of sharpness has been controlled by the parameter �. This is
motivated, as stated in Sec. II, to remove complicated effects
caused by the presence of complicated invariant structures in
generic phase space. However, as a price we have to pay, the
sharpness of the border between torus and chaotic regions
may induce anomalous effects in quantum mechanics.

What is important to realize a sharp border is to take the
kinetic term T0�p� with discontinuity �Eq. �3��. Because of
the nature of the ���x� presented in Eq. �4�, the second de-
rivative T0��p� is nearly discontinuous. Especially, in the limit
�→� T0��p� is strictly sharp and thus the free evolution gives
rise to the so-called Gibbs phenomenon in the Fourier trans-
formation of the wave function in the momentum represen-
tation. Namely, the wave function is strongly diffracted �31�.
Furthermore, since the discontinuity of T0��p� lies near the
border through which dynamical tunneling proceeds, diffrac-
tion can have strong influence on the tunneling process. In
our calculations, we have used a large, yet finite � �say, 100
in Fig. 1�, but the observation of Husimi functions in the first
several steps clearly reveals that there remains a signature of
diffraction even in case �=100 �32�. Therefore we here ex-
amine whether or not what has been claimed in the previous
sections is valid even in small � cases, where the signature
of diffraction is expected to be negligible.

In the case of large � shown in previous sections, a torus
state and a localized state in the chaotic sea play a central
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FIG. 12. �Color online� The scaled exponent of the decay rate
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FIG. 13. �Color online� Ensemble averaged decay rates
log10 ��s for h=1 /5 �square� and 1/20 �circle�. The theoretical lines
��e−2l/� are also drawn. The undershoot in the plot of h=1 /5 is an
artifact of numerical fitting to the data from the limited time evolu-
tion, e.g., n�107. When the width l is large �l�1�, the decay rates
with a smaller Planck’s constant �h=1 /20� become larger than
those with a larger Planck’s constant. This is because the localiza-
tion length � increases as the Planck’s constant decreases.
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role. As � becomes small, resonance islands appear around
the border and the island states associated with them need to
be taken into account in addition to torus and chaotic states
�4,9,33�. This may invoke two kinds of “tunneling channels”
�1� a torus to chaotic sea; �2� a torus to an island, first, and
subsequently the island to chaotic sea.

Our scenario for the numerical study of small � cases is
almost the same as before: launch a wave function from an
approximate torus state �torus�q ; pc� and monitor the time
evolution of Pn

torus. We add noise in a similar manner as be-
fore to destroy the quantum coherence producing dynamical
localization.

For �=5, as shown in Fig. 14, there emerges nonlinear
resonances in the torus region and small islands in the cha-
otic sea as expected. It is important to note that small islands
thus created are almost unchanged even though noise is ap-
plied in the region p�d. An example of a phase portrait is
presented in Fig. 14�b�. This suggests that the changes of the
small islands at different noise strengths do not have any
influence on the tunneling process.

In the absence of noise, whether the quasienergy reso-
nance occurs or not, the wave function is almost bounded in
the torus region and only a small fraction of tunneling tail
penetrates the dynamical barrier. Thus, the behavior of Pn

torus

is similar as that shown in Figs. 3 and 4. As is seen in Fig.
15�a�, the amplitude of the tunneling oscillation is also sen-
sitive to the variation in the parameter s.

Note that the sensitivity with respect to s is not reduced
even with smaller �. The origin of the sensitivity should be
attributed to the resonance among approximate stationary
states, as explained in Sec. V. We comment on the contribu-
tion from the island states, which was not taken into account
in the explanation in Sec. V. This is expected to be small,
since the variation in s influences only on the region far apart
from the torus region, and the quasienergies of island states
do not depend on s. If a quasienergy resonance is sensitive
with respect to s, it must involve a localized state in the
chaotic sea. Hence we conclude such a resonance is the ori-
gin of the strong fluctuation.

As shown in Fig. 15�b�, we have confirmed that chaotic
tunneling is restored even for small �, and that the behavior
of the decay rate � also persists. We note that � for small �
needs to be deliberately determined from the time series of
Pn

torus because the deformation of the tori near the border
makes the preparation of an initial torus state difficult �35�.
In the present numerical experiment, we again take
�torus�q ; pc� as an initial state which is independent with �
�see Appendix, with pc=0.�. The discrepancy of �torus�q ; pc�
from an approximate eigenstate on the torus produces mul-
tiple characteristic time scales in Pn

torus, each of which is
associated with an individual torus state. Here we estimate �
from the most significant contribution in Pn

torus �35�. Evi-
dence justifying such a procedure is shown in Fig. 15�b�: the
positions of oscillation peaks for the case without noise �
=0 are in good agreement with those for the case with small
�. With increase in �, we can see that sensitive dependence of
� gradually disappears, and � becomes larger on average. All
these are consistent with the results for large �.

Here we show another reasoning that the deformation of
islands with the changes of s does not induce the sensitive
fluctuations of the amplitude of the tunneling oscillations and
� in Fig. 15. First, the islands scarcely change with noise, as
is seen in Fig. 15. This suggests that the influence of the s
dependence of the islands on the fluctuations is almost inde-
pendent of the strength of noise. On the other hand, the fluc-
tuation in � disappears with sufficiently strong noise. Hence
we conclude that these fluctuations sensitive to s are mainly
due to the quasienergy resonance.
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ε=0

ε=0.005

ε=0

FIG. 14. �Color online� Phase space portraits for small � �=5�,
where the border between torus and chaotic regions is blurred, and
island chains appear around the border. Other parameters are given
as d=0.45 and s=4. A full view and its magnification are shown in
�a� and �b�, respectively. In �a�, we depict a Lagrangian manifold
corresponding to the initial wave function �torus�q ; pc� with pc=0 by
a thick curve. Also, a thick horizontal line at p=d indicates the
discontinuity of the smoothed step function that appears in the ki-
netic term T0�p�. When � is large, the line p=d touches the border
�see Fig. 1�. On the other hand, for small �, the line p=d and the
boundary are detached �34�. �b� Magnifications around the border
without noise ��=0.0,L=d+0.2� and with noise ��=0.005,L=d
+0.2�. Note that there are almost no effects of noise around the
border.
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FIG. 15. �Color online� Dependence of amplitude of tunneling
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blurred border �a� amplitude of tunneling oscillation, �b� tunneling
decay rate �. The parameters of the underlying classical systems are
the same as in Fig. 14. Here we take h=1 /20. In �b�, the strengths
of � are the same as in Fig. 10�b�.
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VIII. DISCUSSION AND SUMMARY

In this paper, we have shown that there exists a very close
relation between dynamical tunneling and dynamical local-
ization. As mentioned in the Introduction, chaos-assisted tun-
neling or chaotic tunneling is usually understood as a mecha-
nism which enhances tunneling. It is certainly true that the
transition between quasidoublets, whose support in phase
space is symmetric tori, acquires additional tunneling path-
ways with the assistance of chaotic states. Semiclassical ar-
guments also provide a similar picture: exponentially many
tunneling paths connect the torus region to the chaotic sea.

On the other hand, what we have seen in the present paper
is another aspect of the role of chaos in the tunneling pro-
cess. Since the tunneling effect is a typical nonlocal wave
phenomenon, it is natural to expect that what is happening in
chaotic regions must affect the nature of the wave function in
the integrable region and vice versa. It is well known that
even without stable invariant components, wave functions in
the chaotic sea are localized in nontrivial ways, e.g., scarring
due to unstable periodic orbits �36�, localization on cantori,
and dynamical localization. One may thus ask the question
how and to what extent such wave effects appearing in the
chaotic region affect or are influenced by dynamical tunnel-
ing between torus and chaos.

Here we focused particularly on the interplay between
tunneling and dynamical localization and gave evidence that
the nonlocal nature of quantum tunneling becomes manifest
if one of the quantum effects, that is dynamical localization,
is attenuated. If we add noise to the chaotic region, which
destroys the interference generating dynamical localization,
drastic enhancement of the tunneling rate is observed.

The result may be interpreted in two different ways: on
one hand, we may simply say that chaotic tunneling is
strongly amplified under the influence of noise. On the other
hand, we may regard the drastic enhancement of the tunnel-
ing rate as a result of manifestation of potentially existing
chaotic tunneling.

The former interpretation is a bit too naive, but most ar-
guments concerning chaotic tunneling so far have been based
on this picture. This implicitly assumes that chaotic tunnel-
ing is already present even without noise and it occurs irre-
spective of the status of surrounding chaotic seas. In this
picture, the tunneling process ends when the wave function
goes through KAM barriers, and the behavior shown in Fig.
3 is viewed as manifestation of chaotic tunneling.

In contrast, a semiclassical argument employing complex
classical orbits strongly supports and is consistent with the
latter interpretation. As mentioned in the introduction, com-
plex orbits contributing to the tunneling amplitude have an
amphibious character. They play the role of tunneling orbits
when they move into the integrable domain, but behave as
almost real orbits after escaping out of the integrable do-
main. There are exponentially many complex orbits even in
the integrable regime, and they flow into the chaotic sea �14�.
Since these orbits are almost completely governed by the real
dynamics in the chaotic sea, the diffusive motion is sup-
pressed by dynamical localization as in the genuine real dy-
namics. In this sense we can say that the tunneling decay is
inhibited due to dynamical localization in the chaotic sea,

and exponentially many potentially existing tunneling orbits
appear if noise destroys the coherence creating localization.
If this interpretation is true, it should be possible to explain
the maximal tunneling rate, which was observed in the
strong noise limit �see Fig. 10� and called a ”classical” tun-
neling rate, by evaluating the sum over complex orbits which
flow into the chaotic sea, although this evaluation is still not
achievable for several reasons �37�.

We further note that, for almost the same reasons, the
origin of coherent oscillation is not clearly accounted for
within semiclassical arguments. As presented in Fig. 4, the
quasidoublet state was formed between one torus state and
one chaotic state when scanning system parameters. It is rea-
sonable to suppose that some simpler form of coherence than
destructive interferences generating dynamical localization
could underlie complex orbits connecting torus and chaotic
regions, but the mechanism invoking the observed strong
resonances is not well understood.

The most noteworthy consequence of the interplay be-
tween dynamical tunneling and dynamical localization is that
the increase in Planck’s constant does not necessarily lead to
the growth of tunneling rate. As Planck’s constant gets larger,
the localization length decreases, which acts to strengthen
the effect of suppression by dynamical localization. If the
suppression mechanism dominates the change in the tunnel-
ing rate, a counterintuitive change in the tunneling rate with
Planck’s constant may happen. We verified in Fig. 13 that
such a range indeed exists.

We finally discuss the sharpness of the border between
torus and chaotic regions. The motivation for constructing
the system so as to have sharply or clearly divided phase
space was to avoid other complex problems of generic phase
spaces and make the study of our tunneling problem simpler.
In particular, the presence of nonlinear resonances leads to
resonance assisted tunneling �9�, an alternative mechanism
enhancing the tunneling rate. Conversely, cantori or broken
tori play the role of partial barriers which suppress the trans-
port �38–40�. It seems possible to avoid such problems when
we study a system with sharply divided phase space. This is
certainly the case in classical mechanics, but as mentioned in
Sec. VII the sharpness of the boundary, more precisely the
discontinuity of kinetic or potential functions, necessarily in-
vokes diffraction. In Sec. VII, we have verified that the
claims given for the sharply divided case do not nevertheless
need to be corrected at least in a qualitative level. However,
we should recall that the underlying mechanism is quite dif-
ferent between diffraction and tunneling, although both con-
cern classically forbidden processes. We need alternative
semiclassical techniques to obtain quantitative results. In par-
ticular, the semiclassical evaluation employing complex clas-
sical orbits is no longer valid if the system loses analyticity.
It is also frustrating that the recently proposed formula to
predict a tunneling rate assumes the extension of tori of fic-
titious integrable system to the surrounding chaotic sea,
which requires that the border between torus and chaotic
regions be as sharp as possible �41�. This alternatively means
that the validity of this formula is maximally guaranteed in
the strong diffraction limit. A quantitative evaluation of tun-
neling rate is not an easy task if we define dynamical tunnel-
ing as a process far from the diffraction limit. This issue will
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be dealt with in a planned forthcoming publication �32�.
Throughout this paper, noise is implemented as a stochas-

tic process. It is easy to hypothesize that analogous phenom-
ena will occur when we employ chaotic dynamics to realize
noise. Thus we close this paper by raising the following
question: is the spontaneous recovery of chaotic tunneling
generic in multiple-dimensional systems with mixed phase
space?

APPENDIX: QUANTIZATION OF INTEGRABLE TORI

We show how we approximately construct a torus state,
which is the initial state of our numerical experiments �see,
Sec. III�. In the torus region, the classical dynamics of the
system presented in Sec. II A is described by

pn+1 = pn + k sin�2
qn� , �A1�

qn+1 = qn + � . �A2�

We may assume that the momentum of an invariant torus is
specified by a function of q

p = P�q� . �A3�

Namely, (q , P�q�) is supposed to be on a torus. After an
iteration of the integrable map, the system arrives at (q
+� , P�q�+k sin�2
q�), which must agree with (q+� , P�q
+��) by the assumption Eq. �A3�. Hence P�q� must satisfy
the following equation:

P�q� + k sin�2
q� = P�q + �� . �A4�

To solve it, we expand P�q� as

P�q� = �
m=−�

�

ame2
imq. �A5�

The functional equation Eq. �A4� is cast into an algebraic
equation of am

�
m

ame2
imq +
k

2i
e2
iq −

k

2i
e−2
iq = �

m

ame2
im�e2
imq.

�A6�

Hence we have

P�q� = −
k cos�2
�q − �

2 ��
2 sin�
��

+ pc, �A7�

where an arbitrary constant pc specifies a torus. We remark
that the solution of Eq. �A4� exists only when � is not any
integer.

From the Einstein-Brillouin-Keller quantization, we ob-
tain the quantized tori

�torus�q;pc�

= A exp�2
i

h
�

0

q

P�q��dq��
= A exp�2
i

h
� − k

4
 sin�
��
sin�2
�q −

�

2
�� + pcq�� ,

�A8�

where A is a normalization constant. Because �torus�q ; pc�
must be single valued, pc must be quantized.
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